ar X iv : m at h / 99 02 06 8 v 1 [ m at h . A G ] 1 1 Fe b 19 99 SPECTRAL CURVES , OPERS AND INTEGRABLE SYSTEMS
نویسنده
چکیده
We establish a general link between integrable systems in algebraic geometry (expressed as Jacobian flows on spectral curves) and soliton equations (expressed as evolution equations on flat connections). Our main result is a natural isomorphism between a moduli space of spectral data and a moduli space of differential data, each equipped with an infinite collection of commuting flows. The spectral data are principal G–bundles on an algebraic curve, equipped with an abelian reduction near one point. The flows come from the action of a Cartan subgroup of the loop group. The differential data are flat connections known as opers, and the flows on them form a generalized Drinfeld–Sokolov hierarchy. Thus, we obtain a geometric description of the entire phase space of the hierarchy. The above isomorphism extends the Krichever construction of special algebro–geometric solutions of the nth KdV hierarchy corresponding to G = SLn. An interesting feature is the appearance of formal spectral curves, replacing the projective spectral curves of the classical approach. The geometry of these (usually singular) curves reflects the fine structure of loop groups, in particular the detailed classification of their Cartan subgroups. To each such curve corresponds a homogeneous space of the loop group and a soliton system. Moreover the flows of the system have interpretations in terms of Jacobians of formal curves.
منابع مشابه
ar X iv : m at h / 99 02 06 8 v 3 [ m at h . A G ] 1 8 N ov 1 99 9 SPECTRAL CURVES , OPERS AND INTEGRABLE SYSTEMS
We establish a general link between integrable systems in algebraic geometry (expressed as Jacobian flows on spectral curves) and soliton equations (expressed as evolution equations on flat connections). Our main result is a natural isomorphism between a moduli space of spectral data and a moduli space of differential data, each equipped with an infinite collection of commuting flows. The spect...
متن کاملar X iv : m at h / 99 02 06 8 v 2 [ m at h . A G ] 6 M ar 1 99 9 SPECTRAL CURVES , OPERS AND INTEGRABLE SYSTEMS
We establish a general link between integrable systems in algebraic geometry (expressed as Jacobian flows on spectral curves) and soliton equations (expressed as evolution equations on flat connections). Our main result is a natural isomorphism between a moduli space of spectral data and a moduli space of differential data, each equipped with an infinite collection of commuting flows. The spect...
متن کامل2 00 1 Spectral Curves , Opers and Integrable Systems
We establish a general link between integrable systems in algebraic geometry (expressed as Jacobian flows on spectral curves) and soliton equations (expressed as evolution equations on flat connections). Our main result is a natural isomorphism between a moduli space of spectral data and a moduli space of differential data, each equipped with an infinite collection of commuting flows. The spect...
متن کاملN ov 2 00 2 SPECTRAL CURVES , OPERS AND INTEGRABLE SYSTEMS
We establish a general link between integrable systems in algebraic geometry (expressed as Jacobian flows on spectral curves) and soliton equations (expressed as evolution equations on flat connections). Our main result is a natural isomorphism between a moduli space of spectral data and a moduli space of differential data, each equipped with an infinite collection of commuting flows. The spect...
متن کاملQuantization of Soliton Systems and Langlands Duality
We consider the problem of quantization of classical soliton integrable systems, such as the KdV hierarchy, in the framework of a general formalism of Gaudin models associated to affine Kac–Moody algebras. Our experience with the Gaudin models associated to finite-dimensional simple Lie algebras suggests that the common eigenvalues of the mutually commuting quantum Hamiltonians in a model assoc...
متن کامل